艺术档案 > 未来媒体艺术 > 世界首份人工智能白皮书 看AI与艺术的交汇融合

世界首份人工智能白皮书 看AI与艺术的交汇融合

2023-10-09 16:51:55.663 来源: 凤凰艺术 作者:张皓翔

2023年9月17日,“中国人工智能学会(CAAI)系列白皮书”发布会在江西南昌举行。

《大模型技术》《AI+Art》《人工智能原理》《数字社会的风险挑战与治理应对》《深度学习》《心智计算》《智慧电网》《大型语言模型的教育应用》《智能协同控制与人工智能》等9本白皮书在发布会上集体亮相。


117.jpg


2023年9月17日,“中国人工智能学会(CAAI)系列白皮书”发布会在江西南昌举行。《大模型技术》《AI+Art》《人工智能原理》《数字社会的风险挑战与治理应对》《深度学习》《心智计算》《智慧电网》《大型语言模型的教育应用》《智能协同控制与人工智能》等9本白皮书在发布会上集体亮相,《AI+Art》编撰负责人、中央美术学院副院长邱志杰现场做讲解分享。CAAI 副理事长、重庆邮电大学副校长、IRSS/CAAI/CCF Fellow王国胤教授担任发布会主席并主持发布会。

作为2023第十二届中国智能产业高峰论坛同期活动之一,此次发布会推出的9本白皮书荟萃了产学研的成果结晶和实践经验,是高峰论坛内容成果的重要补充和延伸,包括多个首创、首次、首例的知识点,对促进人工智能的政策制定、理论研究、学科建设、技术创新、应用推广具有重要意义,将为管理者、从业者、教育者、研究者、投资者等各界人士的决策和交流学习提供专业参考。其中,世界首份人工智能系列白皮书《AI+Art》是由中央美术学院牵头,携手全球人工智能领域的知名专家学者共同编撰。这一里程碑式的成果不仅为AI与艺术领域的交汇点提供了深度洞察,更为人工智能与文化艺术的融合发展指明了方向。



▲ 发布会嘉宾合影

▲ 中央美术学院副院长邱志杰讲解《AI+Art》

 

《AI+Art》白皮书发布人、中央美术学院副院长邱志杰在发言中梳理了AI艺术的发展背景,以及其在艺术史中的意义、相关的算法和工程问题,并分享了《AI+Art》的创作案例和AI对艺术生态的影响。

自1956年提出人工智能(AI)以来,AI产业与技术不断发展,AI大模型成为一训多能的人工智能算法基础设施。2019年以来,大模型泛化求解能力大幅提升,成为产业主流技术路线。AI大模型是“人工智能预训练大模型”的简称,包含了“预训练”和“大模型”两层含义,是一训多能的人工智能算法基础设施。“大模型+小模型”逐步成为产业主流技术路线,驱动全球AI产业的全面加速。

数字艺术是全球公认的具有独立审美价值的艺术形式,近年来迅速发展,AI模型技术的成熟无疑将为数字艺术带来更广阔的发展空间,其中特别涵盖于国家文化数字化的战略构想,尤其是数字艺术产业化的发展理念。党的二十大报告明确部署建设网络强国、数字中国,实施国家文化数字化战略。中共中央办公厅、国务院办公厅印发《关于推进实施国家文化数字化战略的意见》和《数字中国建设整体布局规划》,说明文化数字化已成为建设社会主义文化强国、实现文化高质量发展的战略选择,对我国文化发展、文化产业国际竞争力和文化安全等方面发挥着不可替代的重要作用。


36.jpg

▲人工智能作为科技艺术(130412TK)的核心驱动力


《AI+Art》白皮书梳理研究了AI与视觉艺术结合的应用案例和艺术作品,以及国家数字艺术相关战略、国际学术前沿,为全面更新数字艺术发展模式,实现数字艺术产业新格局提供参考。研究希望助力推动AI艺术创新和产业应用的成果转化,以支撑社会美育建设。以AI艺术的发展过程向世界讲好中国故事,传播中国文化价值,建构中国美术教育的话语体系与评价体系,提升中国新时代新形象和文化软实力。通过产生一套面向艺术创作者的AI大模型的创作方法论,从而完善大模型数字艺术生成的评价标准,为建立数据库、资源交流平台、满足国家战略提供多维度的建议。同时积极探索运用AI大模型将数字艺术延伸到屏幕之外的可能性,为数字艺术形态的迭代提供建议。

《AI+Art》白皮书旨在强调跨学科和文理贯通的精神,将文化发展和AI统一在人文精神框架下,反思科技发展对人的精神和社会心理的影响,并持批判性思考。同时强调艺术思维对科技创新的激发,将横向、发散、逆向等创造性思维融入学科建设,以艺术探索的能量激发双向创新。在艺术学科重视AI技术发展史,通过了解技术史、科学思维和实验方法,探索未知领域。


一文了解——

《AI+Art》白皮书重点

45.jpg


一、AI艺术的发展概述

自1956年AI的概念应运而生,它已历经多个高潮与低谷。最初的规则引擎及知识系统后,编写组见证了80和90年代神经网络与机器学习的崛起,揭示了AI在不断进化,挑战其先前的界定。近五年的进展更是飞速。计算力与数据量的巨大增长,让深度学习技术,特别是生成式对抗网络(GANs)大放异彩,该技术通过一对神经网络的对抗训练能生成接近真实的数据。这种技术的影响力可从《Edmond de Belamy》肖像画上见证,这幅通过GAN生成的作品,以较高的拍卖价格震撼了艺术和技术界。同时,随着业界对AI训练数据集版权的关注,这类作品重回聚光灯下。

然而,技术总是伴随挑战。GANs在艺术生成上存在不确定性,其输出很难与艺术家的初始指令完全对齐。且因为训练过程复杂且需大量资源,每次创作方向的变动都要求重新训练,降低了效率。转眼到了2021年下半年,一系列先进模型如扩散模型、CLIP以及其他预训练大模型的问世,大大推进了AI在艺术领域的应用。尤为出色的CLIP,能将文本描述与图像紧密联系,为艺术家提供了更准确的生成能力。这种进步不仅仅是技术上的,更是为艺术家提供了创作上的工具升级。

现今的AI工具开始扮演了艺术家的辅助角色,例如利用GANs快速生成草图,从中筛选出最具创意的作品细化。从这一发展趋势来看,AI不再仅仅是艺术创作的尝试,更是开始深入地、有系统地融入到艺术创作的每一个环节中。


56.jpg


二、AI艺术的艺术史意义

在20世纪的艺术脉络中,艺术家们深受规则和结构的启发,利用预定的系统来引导、限制或放大创造力。著名的艺术家如布里奇特·莱利和维克多·瓦萨雷利采用几何模式为观众呈现视觉错觉,而理查德·朗和迈克尔·巴恩斯利则受分形理论的启示,利用数学逻辑来呈现艺术作品中的无穷细节。

这种对规则的探索不仅体现在传统的艺术形式上,还在技术与艺术的结合中得到深化。Process Art聚焦于艺术创作过程,展现了系统与偶然性的有趣交融。科恩等艺术家甚至引入编程语言,以计算机为辅助,探索艺术的生成规则。摩尔更是在“P-511/D”系列中,通过预定义的算法,全面挖掘了立方体的各种可能性。

而观念艺术更是将规则和指令提升到了新的高度。以索尔·莱维特为例,他的壁画系列根据特定的指令创作,这些指令开放而多样,允许不同执行者带来各式各样的解读和体验。规则与自由、预测与不确定性在这里交织成一个复杂而丰富的网络,为后来AI+Art的发展提供了深厚的土壤。


三、AI艺术的算法与工程问题

1. AIGC算法简述

生成式技术在AIGC领域中也扮演着重要角色,它在数据生成和增强、无监督学习、视觉和语言生成、强化学习和策略生成,以及创意和艺术生成等方面为编写组开启了创造性和多样性的视角,推动了智能系统在创造、理解和交互方面的进步。

生成式技术通过学习数据分布模型来生成新的数据样本。这些模型通常基于概率模型,如生成对抗网络和变分自编码器。其中,生成对抗网络在图像生成领域取得了重大突破,其用于生成逼真的图像样本。后来,Tero Karras等人提出StyleGAN ,用于生成逼真的人脸图像。它通过在生成网络中引入风它通过在生成网络中引入风格向量,并采用渐变叠加的训练方法,生成高分辨率、多样化和具有艺术风格的人脸图像。人脸中的“Style”通常是指头部的姿态、面部的表情、人物的发型等。如图所示,StyleGAN生成的人脸可以捕获到这些细节并生成高质量的图像,而且在不同分别率的条件下有一致的表现。OpenAI团队提出的GPT基于深度自回归Transformer模型。它在自然语言处理任务中取得了突破性的成果,具有强大的语言生成能力和广泛的应用前景。

最近,Stable Diffusion 作为一种生成式技术,提供了一种有效的方法来生成高质量的图像样本。该方法通过对噪声进行多步扩散来生成图像,每一步都会逐渐减小噪声的规模,使生成的图像逐渐变得清晰。Stable Diffusion在生成图像的质量和多样性方面取得了显著的进展,并被广泛应用于图像生成任务。


63.jpg

▲StyleGAN生成结果图(来源:StyleGAN)


2. AI+Art生成任务中的工程化问题

随着扩散模型和微调技术的进步,从2022年底开始,以ChatGPT和Midjourney为例,生成式AI技术已经被广泛应用于多种移动应用和商业产品中,实现了工程化应用,进而使其更加亲民并服务于实际业务场景。工程化主要考虑:(1)提供优良的用户体验,包括美观、易用的用户界面和高效的构建及维护方法;(2)灵活地获取所需的算力资源,尤其是面对资源紧张的情况下;(3)确保生成效果的稳定性,特别是面对带有随机性和不确定性的生成式AI技术。除了上述焦点,随着工程化的深入实践,新问题如模型管理和搜索、媒体资源的存储和管理等也开始浮现,需要被合理地解决以确保生成式AI的长期、稳定和高效的应用。

74.jpg

用户在应用平台中调用生成式AI模型,设定参数并获取反馈,而这一过程得以高效运行依赖于简洁易用和功能齐全的平台设计。此类平台主要为算法工程师、制作人和设计师服务。算法工程师在平台上主要关注AI模型的训练与调优,其中,可视化的用户界面可帮助他们更快地调整参数,减少编码量,进而优化模型效果。制作人,传统上需要与设计师多次沟通以实现自己的设计理念,现在可以通过AI平台直接将创意转化为图像形式,从而简化与设计师的沟通。而设计师则利用平台高效生成大量初稿,之后可以细化和完善这些设计,实现流畅的设计工作流程。


83.jpg


四、AI+Art案例

在前AI时代,数字创世纪被视作数据可视化的扩展,主要聚焦于虚拟空间的数字景观构建。交互性是这个领域的核心,艺术家和游戏开发者利用游戏引擎,如Unity和Unreal Engine,结合艺术与代码,为观众带来沉浸式体验。但由于技术限制,前AI时代的数字创作通常是线性和单一的。而AI技术的引入为艺术家提供了更广阔的创作空间,允许更加精细和真实的虚拟环境构建,同时增强了作品的交互性。这不仅为艺术家开启了多样创作可能性,也为观众带来了新的鉴赏体验。这种技术与艺术的融合既激发了无限的创意,也引发了关于创新与伦理的讨论。通过研究近年来的AI艺术案例,编写组可以深入了解这场正在进行的文化与技术的交融与变革。编写组将案例大致分为三个类别,以获得结果为导向的AI生成类作品、由AI驱动的交互式作品、涉及多智能体虚实结合的作品。


93.jpg

1.生成式

在早期的AIGC创作中,编写组注意到生产关系并没有显著的革新,研究者和创作者更多地专注于算法的创新和调整,目的是得到一个令人满意的“画面”。但随着AI生成任务从算法创新逐渐转向产品化,艺术家现在应更积极地参与模型的训练过程。从AI的视角看,当前的模型推理更像是为消费者服务。而对于创作者来说,现在应将训练AI模型,而非仅仅获得最终的生成结果,作为创作的核心目标。


2.AIGC标准建设

AIGC急需建立标准的原因可以从ImageNet项目和李飞飞在图像识别领域的工作中获得启示。当ImageNet项目被推出时,通过引入一个有标签的大规模图像数据集,它为图像识别领域设定了一个共同的基准和评估标准。这种标准化促进了技术的快速发展,因为研究者们可以在同一数据集上进行比较,分享方法和结果,从而快速推进领域内的研究。相似地,AIGC领域面临着多样性和复杂性,尽管AI艺术在国际范围内有广泛的应用,但在特定的垂直应用如中国文化艺术数字化生产中仍存在挑战。没有一个共同的标准或基准,可能导致研究和应用的碎片化。通过建立一个或多个标准化基准,编写组可以促进跨多个领域和维度的合作,从技术、设备到内容和产业,从而更好地满足公众的审美体验和实际需求。因此,正如ImageNet推动图像识别领域的进步一样,AIGC领域亟需建立相应的标准来引领和整合该领域的发展。生成艺术的评判因其涉及深度的专业知识和主观审美而变得复杂,迫切需要艺术界的专家输入(如RLHF)来建立评价标准。合作开发的评价模型(Reward Model)可以独立于生成模型,为自动生成的艺术作品提供专家级的评分,旨在为生成领域提供更精确、科学的评价机制,并加强艺术家与技术研究者之间的连接。

AI在艺术领域的应用涉及技术与文化的深度整合,尽管国际上的AI艺术应用广泛,但在满足中国文化艺术需求上仍有空缺。为了更好地服务文化和艺术行业,除了上述标准的建设,编写组需要在多个方面加强合作和研究,技术、设备、内容创作和管理等,目的是打破技术和艺术界的壁垒,并解决AI在数字艺术创作中的实际应用问题。


103.jpg

生成式艺术与数据可视化和数字创世纪之间存在一个深层次的联系。数据可视化始于将复杂的数据集转化为视觉形式,使之更易于理解和消化,而数字创世纪则涉及在数字空间中构建和塑造虚拟环境。生成式艺术,作为这两者的延伸,探索了如何使用算法和数学模型创造出新的、前所未有的艺术形式。

随着技术的进步,特别是人工智能的崛起,生成式艺术的领域得到了进一步的拓展。AI驱动的交互为生成式艺术带来了新的可能性,使艺术家能够创造出更加复杂和动态的生态系统。这些系统不再是静态的、预先定义的结构,而是能够根据内部的规则和外部的互动进行实时的变化和演化。


3.AI驱动交互

交互艺术强调观众的参与,与传统艺术相比更鼓励观众与作品进行实时的交互和反馈。观众往往可以通过触摸、倾听、行走等形式与 作品进行互动。随着信息技术的进步,人机交互的界面也由最开始的 命令界面、图形界面、多媒体界面朝着更智能、更复杂的混合形式发 展。人工智能为主的交互作品,也由简单的线性互动逐渐发展为多维度,多结果的综合感官交互。

编写组观察到AI技术为叙事赋予了新的维度,观众可能被邀请进入一个由AI驱动的机器人组成的宇宙,扮演创造世界的角色,有权决定各个星球上生物的命运。通过与系统的交互,观众可以选择助长生物之间的和谐与合作,也可以选择导致它们之间的冲突或完全毁灭它们。这种叙事方式为观众提供了影响故事发展的机会,从而创造出无限的叙事可能性。


4.多智能体艺术

多智能体系统(MAS)是人工智能的一个子领域,专门研究多个自治智能体如何互相交互和合作。每个智能体都有自己的感知、决策和行动能力,并根据自己的目标进行合作或竞争。整个系统的行为由这些智能体的互动产生,能够模拟真实世界的复杂场景。艺术家如Ian Cheng通过作品"BOB"探索了虚拟的多智能体生态系统。在艺术领域,MAS不仅可以模拟人类的创作过程,如集体绘画,而且还可以展示机器在互动中如何形成和优化其"意识"或"观念"。这为艺术家提供了一个新的视角,探索机器如何感知和理解外部世界。


119.jpg

▲ 斯坦福大学的AI小镇项目


五、对艺术生态的影响

将AI应用于艺术创作,能推动对AI算法的改进研究。通过在不同应用场景下对算法的表现进行研究和分析,可以使人们不断反思AI算法的极限、原理以及它的未来发展。AI大模型的应用将促进艺术家和科技研究人员之间的交流与合作,进一步拓宽数字化创作的可能性。艺术创作不仅能够拓展AI应用场景,还能为AI算法的改进提供实验数据和实践基础。跨界合作能同时推动技术的发展和文化与艺术的数字化转型,进而推动中国式现代化进程。因此,艺术与AI的深度融合将成为文化数字化建设的重要方向,这也是研究AI在国家文化数字化建设中的重要意义所在。


125.jpg


《AI+Art》白皮书旨在强调跨学科和文理贯通的精神,将文化发展和AI统一在人文精神框架下,反思科技发展对人的精神和社会心理的影响,并持批判性思考。同时强调艺术思维对科技创新的激发,将横向、发散、逆向等创造性思维融入学科建设,以艺术探索的能量激发双向创新。在艺术学科重视AI技术发展史,通过了解技术史、科学思维和实验方法,探索未知领域。

中国文化传统的悠久历史和独特贡献,AI技术在全球化的影响下西方文化逐渐进入中国,且对中国现代化建设和文化创新起到了借鉴和启示作用。目前AI艺术创作的研究成果较多来自西方,这显示出一定的研究难度,又揭示了该研究的必要性。扎根中国,学习西方的观点强调了对中国传统文化的保护和传承,同时也注重吸收和融合西方文化中有价值的元素,以此来促进中国与世界的文化交流同时提升国际竞争力、文化软实力。                                         

(以上内容来源: 中央美术学院)


借此机会,编写组感谢中央美术学院、京东人工智能研究院、亚马逊云科技、以及匿名的多位师友、单位给予的无微不至的支持,感谢人工智能学会各方的信任和耐心。本白皮书最需要感谢的是,那些在2023年酷暑之下,犹如精心雕琢每一件艺术品的雕刻师,倾心打磨、细心塑造的编写团队成员,你们是这白皮书中不可或缺的灵魂。正是因为你们无私的奉献,这份白皮书才得以绽放光彩。考虑到这项工作来的突然,毅然担下这份责任的同时,编写组全体成员在没有额外经费资助的背景下,凭着对AI与艺术结合的热情,以及为社会与学术界贡献的初衷,仅仅依赖自己的业余时间和精力,完善了这份白皮书。

在编写过程中,编写组参考了众多的资料、艺术家网站和以前的研究成果,对于这些资料的原作者和一直在实践的艺术工作者们,表示最深的敬意和感谢。他们的作品和研究成果为编写组提供了宝贵的灵感和支持,帮助编写组完成了这个项目。本白皮书由中央美术学院副院长邱志杰主持编写,陈抱阳主笔。由于时间、资源等实际因素的限制,文中难免存在疏漏和不足之处。编写组深感歉意,并热切期待广大读者的反馈和建议,以帮助编写组不断完善和进步。



中国人工智能系列白皮书

《AI+Art》编写组

132.jpg


《中国人工智能系列白皮书》

编委会

28.jpg

 

 

【声明】以上内容只代表原作者个人观点,不代表artda.cn艺术档案网的立场和价值判断。

网友评论

共 0 评 >>  我要留言
您的大名